更新时间: 浏览次数: 258
中新网北京12月5日电 (记者 孙自法)国际著名学术期刊《自然》最新发表一篇气候研究论文称,研究人员研发出一个名为“GenCast”的机器学习模型,其能根据当前和未来天气进行可靠的概率天气预报。该模型表现不仅超过了目前最好的传统中程天气预报,还能更好地预测极端天气、热带气旋路线和风能产量。
该论文介绍,准确的天气预报对于个人、政府和组织的日常关键决策必不可少,这些决策包括是否带雨伞、评估风能产量或是极端天气规划。气象预报传统上使用数值天气预报法,这种方法估计当前天气,并基于此预测未来一段时间的天气情况(称为确定性预报)。这会产生大量潜在情景,通过结合这些情景就能进行天气预报。
在本项研究中,论文第一作者兼共同通讯作者、谷歌旗下前沿人工智能公司DeepMind的Ilan Price和同事合作,研发出GenCast的机器学习天气预测方法,其能生成概率性预测,即根据当前和之前的天气状态预测未来天气的可能性。论文作者用40年(1979至2018年)的天气发生最佳估计分析数据训练了GenCast,使其能在8分钟内对超过80个表面和大气变量进行以12小时为单位的15天全球预报。
这次研究结果显示,相较于一种确定性预报且是全球当前最好的中期预报——欧洲中期天气预报中心的集合预报(ENS),GenCast在用于评估表现的1320个指标中有97.2%的指标都优于ENS。论文作者还发现,GenCast在预测极端天气、热带气旋路线和风能产量时更有效。
论文作者总结指出,天气预报机器学习模型GenCast或能提供更高效、有效的天气预报,以支持实际规划。(完) 【编辑:张乃月】 新闻结尾
精东app视频网站黄版,畅享高清影视盛宴,尽情体验无限乐趣与精彩内容!的相关文章
中国—匈牙利文化交流周在福州开幕的相关文章
让中欧班列运行更加稳健高效
美联储降息后,9月中国LPR未变
人民军队与祖国同奋进共成长|《坚守的力量》
培育乡村新产业新业态
从0到1,他做了什么让6G不再“高不可攀”?
【新中国成立75周年特刊】江山如画 75张图里看见这样的中国