更新时间: 浏览次数: 258
中新网北京12月5日电 (记者 孙自法)国际著名学术期刊《自然》最新发表一篇气候研究论文称,研究人员研发出一个名为“GenCast”的机器学习模型,其能根据当前和未来天气进行可靠的概率天气预报。该模型表现不仅超过了目前最好的传统中程天气预报,还能更好地预测极端天气、热带气旋路线和风能产量。
该论文介绍,准确的天气预报对于个人、政府和组织的日常关键决策必不可少,这些决策包括是否带雨伞、评估风能产量或是极端天气规划。气象预报传统上使用数值天气预报法,这种方法估计当前天气,并基于此预测未来一段时间的天气情况(称为确定性预报)。这会产生大量潜在情景,通过结合这些情景就能进行天气预报。
在本项研究中,论文第一作者兼共同通讯作者、谷歌旗下前沿人工智能公司DeepMind的Ilan Price和同事合作,研发出GenCast的机器学习天气预测方法,其能生成概率性预测,即根据当前和之前的天气状态预测未来天气的可能性。论文作者用40年(1979至2018年)的天气发生最佳估计分析数据训练了GenCast,使其能在8分钟内对超过80个表面和大气变量进行以12小时为单位的15天全球预报。
这次研究结果显示,相较于一种确定性预报且是全球当前最好的中期预报——欧洲中期天气预报中心的集合预报(ENS),GenCast在用于评估表现的1320个指标中有97.2%的指标都优于ENS。论文作者还发现,GenCast在预测极端天气、热带气旋路线和风能产量时更有效。
论文作者总结指出,天气预报机器学习模型GenCast或能提供更高效、有效的天气预报,以支持实际规划。(完) 【编辑:张乃月】 新闻结尾
“睡过很多健身的人的体验知乎:如何平衡健身与充足睡眠,以提升锻炼效果?”的相关文章
新能源汽车受青睐!这个假期道路上充满“绿”色的相关文章
12国外籍师生游布达拉宫:“我爱西藏!”
世界对中国经济的关注和信心不断增强 词云图发现→
第八届中国非遗博览会开幕 数字技术让“传统”焕“新彩”
1-8月中国国有企业营业总收入同比增长1.4%
日本石垣岛附近海域发生4.9级地震 震源深度10公里
2024年首尔世界烟花节在汉江公园举行